磷酸鐵鋰
磷酸鐵鋰電極材料主要用于各種鋰離子電池. 自1996年日本的NTT揭露AyMPO4(A為堿金屬,M為CoFe兩者之組合:LiFeCOPO4)的橄欖石結構的鋰電池正極材料之后, 1997年美國德克薩斯州立大學John. B. Goodenough等研究群,也接著報導了LiFePO4的可逆性地遷入脫出鋰的特性,美國與日本不約而同地發(fā)表橄欖石結構(LiMPO4), 使得該材料受到了極大的重視,并引起廣泛的研究和迅速的發(fā)展。與傳統(tǒng)的鋰離子二次電池正極材料,尖晶石結構的LiMn2O4和層狀結構的LiCoO2相比,LiMPO4 的原物料來源更廣泛、價格更低廉且無環(huán)境污染。
目錄
l 高能量密度,
l 安全性,
l 壽命長。
l 無記憶效應;
l 充電性能,
展開
磷酸鐵鋰電極材料主要用于各種鋰離子電池.
自1996年日本的NTT揭露AyMPO4(A為堿金屬,M為CoFe兩者之組合:LiFeCOPO4)的橄欖石結構的鋰電池正極材料之后, 1997年美國德克薩斯州立大學John. B. Goodenough等研究群,也接著報導了LiFePO4的可逆性地遷入脫出鋰的特性,美國與日本不約而同地發(fā)表橄欖石結構(LiMPO4), 使得該材料受到了極大的重視,并引起廣泛的研究和迅速的發(fā)展。與傳統(tǒng)的鋰離子二次電池正極材料,尖晶石結構的LiMn2O4和層狀結構的LiCoO2相比,LiMPO4 的原物料來源更廣泛、價格更低廉且無環(huán)境污染。
其理論比容量為170mAh/g,產品實際比容量可超過140 mAh/g(0.2C, 25°C);
是目前zui安全的鋰離子電池正極材料; 不含任何對人體有害的重金屬元素;
在100%DOD條件下,可以充放電2000次以上; (原因:磷酸鐵鋰晶格穩(wěn)定性好,鋰離子的嵌入和脫出對晶格的影響不大,故而具有良好的可逆性。存在的不足是電子離子傳到率差,不適宜大電流的充放電,在應用方面受阻。解決方法:在電極表面包覆導電材料、摻雜進行電極改性。)
磷酸鐵鋰正極材料的鋰電池,可以使用大倍率充電,zui快可在1小時內將電池充滿。
具體的物理參數(shù):
松裝密度:0.7g/cm
振實密度:1.2g/cm
中位徑:2-6um
比表面積<30m/g
涂片參數(shù):
LiFePo4:C:PVDF=90:3:7
極片壓實密度:2.1-2.4g/cm
電化性能:
克容量>155mAh/g 測試條件:半電池,0.2C,電壓4.0-2.0V
循環(huán)次數(shù):2000次
國內磷酸鐵鋰材料生產商:
國內:天津斯特蘭 北大先行 湖南瑞翔 鐵虎能源 中國臺灣長圓 中國臺灣立凱 鄭州朗泰 杭州賽恩斯等
?。杭幽么?font face="Helvetica">Phostech、美國Valence、美國A123、日本sony. 其中A123規(guī)模zui大且得到美國政府的大力支持。
磷酸鐵鋰是一種新型鋰離子電池電極材料。其特點是放電容量大,價格低廉,無毒性,不造成環(huán)境污染。世界各國正競相實現(xiàn)產業(yè)化生產。
但是其振實密度低,影響電容量。
目前主要的生產方法為高溫固相合成法,產品指標比較穩(wěn)定。
鋰離子電池的性能主要取決于正負極材料,磷酸鐵鋰作為鋰離子電池的正極材料是近幾年才出現(xiàn)的事,國內開發(fā)出大容量磷酸鐵鋰電池 是2005年7月。其安全性能與循環(huán)壽命是其它材料所無法相比的,這些也正是動力電池zui重要的技術指標。1C充放循環(huán)壽命達2000次。單節(jié)電池過充電壓30V不燃燒,穿刺不爆炸。磷酸鐵鋰正極材料做出大容量鋰離子電池更易串聯(lián)使用。以滿足 電動車 頻繁充放電的需要。具有無毒、無污染、安全性能好、原材料來源廣泛、價格便宜,壽命長等優(yōu)點,是新一代鋰離子電池的理想正極材料。
本項目屬于高新技術項目中功能性能源材料的開發(fā),是國家“863”計劃、“973”計劃和“十一五”高技術產業(yè)發(fā)展規(guī)劃重點支持的領域。
目前鋰離子電池還是以小容量、低功率電池為主,中大容量、中高功率的鋰離子電池尚開始試水大規(guī)模生產,使得鋰離子電池逐步在中大容量UPS、中大型儲能電池、電動工具、電動汽車中得到廣泛應用。
迄今研究zui多的正極材料是LiCoO2、LiNiO2、LiMn2O4 及以上三種材料的衍生物,如LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2 等。
LiCoO2 是*大規(guī)模商品化的正極材料,目前90%以上的商品化鋰離子電池采用LiCoO2 作為正極材料。LiCoO2 的研究比較成熟,綜合性能優(yōu)良,但價格昂貴,容量較低,存在一定的安全性問題。
LiNiO2 成本較低,容量較高,但制備困難,材料性能的一致性和重現(xiàn)性差,存在較為嚴重的安全問題。LiNi0.8Co0.2O2 可看成LiNiO2 和LiCoO2的固溶體,兼有LiNiO2 和LiCoO2 的優(yōu)點,一度被人們認為是zui有可能取代LiCoO2 的新型正極材料,但仍存在合成條件較為苛刻(需要氧氣氣氛)、安全性較差等缺點,綜合性能有待改進;同時由于含較多昂貴的Co,成本也較高。
尖晶石LiMn2O4 成本低,安全性好,但循環(huán)性能尤其是高溫循環(huán)性能差,在電解液中有一定的溶解性,儲存性能差。
新型的三元復合氧化物鎳鈷錳酸鋰 (LiNi1/3Co1/3Mn1/3O2)材料集中了LiCoO2、LiNiO2、LiMn2O4等材料的各自優(yōu)點:成本與LiNi0.8Co0.2O2 相當,可逆容量大,結構穩(wěn)定,安全性較好,介于LiNi0.8Co0.2O2 和LiMn2O4 之間,循環(huán)性能好,合成容易;但由于含較多昂貴的Co,成本也較高。對中大容量、中高功率的鋰離子電池來說,正極材料的成本、高溫性能、安全性十分重要。
上述LiCoO2、LiNiO2、LiMn2O4 及其衍生物正極材料尚不能滿足要求。因此,研究開發(fā)能用于中大容量、中高功率的鋰離子電池的新型正極材料成為當前的熱點。
正交橄欖石結構的LiFePO4 正極材料已逐漸成為國內外新的研究熱點。初步研究表明,該新型正極材料集中了LiCoO2、LiNiO2、LiMn2O4 及其衍生物正極材料的各自優(yōu)點:不含貴重元素,原料廉價,資源極大豐富;工作電壓適中(3.4V);平臺特性好,電壓極平穩(wěn)(可與穩(wěn)壓電源媲美);理論容量大(170mAh/g);結構穩(wěn)定,安全性能(O 與P 以強共價鍵牢固結合,使材料很難析氧分解);高溫性能和熱穩(wěn)定性明顯優(yōu)于已知的其它正極材料;循環(huán)性能好;充電時體積縮小,與碳負極材料配合時的體積效應好;與大多數(shù)電解液系統(tǒng)兼容性好,儲存性能好;無毒,為真正的綠色材料。
與LiCoO2、LiNiO2、LiMn2O4 及其衍生物正極材料相比,LiFePO4 正極材料在成本、高溫性能、安全性方面具有突出的優(yōu)勢,可望成為中大容量、中高功率鋰離子電池的正極材料。
該材料的產業(yè)化和普及應用對降低鋰離子電池成本,提高電池安全性,擴大鋰離子電池產業(yè),促進鋰離子電池大型化、高功率化具有十分重大的意義,將使鋰離子電池在中大容量UPS、中大型儲能電池、電動工具、電動汽車中的應用成為現(xiàn)實。
然而,磷酸鐵鋰堆積密度低的缺點一直受到人們的忽視和回避,尚未得到解決,阻礙了材料的實際應用。鈷酸鋰的理論密度為5.1g/cm3,商品鈷酸鋰的振實密度一般為2.0-2.4g/cm3;而磷酸鐵鋰的理論密度僅為3.6g/cm3,本身就比鈷酸鋰要低得多。
為提高導電性,人們摻入導電碳材料,又顯著降低了材料的堆積密度,使得一般摻碳磷酸鐵鋰的振實密度只有1.0-1.2g/cm3。如此低的堆積密度使得磷酸鐵鋰的體積比容量比鈷酸鋰低很多,制成的電池體積將十分龐大,不僅毫無優(yōu)勢可言,而且很難應用于實際。
因此,提高磷酸鐵鋰的堆積密度和體積比容量對磷酸鐵鋰的實用化具有決定意義。粉體材料的顆粒形貌、粒徑及其分布直接影響材料的堆積密度。
舉例來說,Ni(OH)2 是用于鎳氫電池和鎳鎘電池的正極材料。以前,人們采用片狀的Ni(OH)2,其振實密度只有1.5-1.6g/cm3;目前采用的球形Ni(OH)2 的振實密度可達2.2-2.3g/cm3;球形Ni(OH)2 已基本上取代了片狀的Ni(OH)2,顯著提高了鎳氫電池和鎳鎘電池的能量密度。
本實驗室借鑒高密度球形Ni(OH)2 的研究成果,開發(fā)成功了鋰離子電池高密度球形系列正極材料,包括LiCoO2 、LiMn2O4 LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2 等。
其中LiCoO2、LiNi0.8Co0.2O2 的振實密度已可達到2.9g/cm3,遠高于商品化的同類材料。研究和實際應用表明,球形產品不僅具有堆積密度高、體積比容量大等突出優(yōu)點,而且還具有優(yōu)異的流動性、分散性和可加工性能,十分有利于制作正極材料漿料和電極片的涂覆,提高電極片品質;此外,相對于無規(guī)則的顆粒,規(guī)則的球形顆粒表面比較容易包覆完整、均勻、牢固的修飾層,因此球形產品更有希望通過表面修飾進一步改善綜合性能。
在此基礎上,我們提出:球形化是鋰離子電池正極材料的發(fā)展方向。目前國內外報導的LiFePO4 正極材料都是由無規(guī)則的顆粒組成的,粉體材料的堆積密度和能量密度較低。因此,本項目致力于LiFePO4 材料顆粒的球形化,通過顆粒的球形化來提高材料的堆積密度和體積比容量;在此基礎上,發(fā)揮球形材料易于表面包覆的優(yōu)勢,進一步通過球形顆粒的表面修飾提高材料的綜合性能;在對LiFePO4 材料顆粒的球形化和表面修飾的過程中,充分借鑒、吸收、利用人們在提高磷酸鐵鋰的電導率方面已取得的成果;zui終制備出球形、高堆積密度、高體積比容量、高導電性的LiFePO4 正極材料,使之能應用于中大容量、中高功率的鋰離子電池,促進該材料的產業(yè)化。
目前,本研究室采用二價鐵鹽或三價鐵鹽、磷酸或磷酸鹽、氨水為原料,通過控制結晶技術合成高密度球形磷酸鐵前驅體,再與鋰源、碳源共混熱處理,通過碳熱還原法合成摻碳的高密度球形磷酸鐵鋰。該磷酸鐵鋰粉體材料由單分散球形顆粒組成、粒徑5-10μm、堆積密度大(振實密度可達1.6-1.8g/cm3)、流動性好、可加工性能好,可逆容量140mAh/g。
電話
微信掃一掃